So here is a fish and electrical signals are coming down the nerve, and this is how a fish swims. At the junction between nerves and muscles, the electrical signals have to get through the synapse before you get electrical signals on the muscle, which are striated. And so you see this in close up. Now we're going to look at what happens at a synapse, and what you'll see is an electrical signal coming down the nerve reaching the nerve end, and calcium channels open as a result of the electrical signal. Calcium enters, and the entry of calcium passes vesicles. diffuse, release their contents, which is the neurotransmitter acetylcholine, which is then free to bind to the receptors on the muscle side. These receptors are ion channels, that open up, they let sodium in. The entry of sodium then triggers the electrical signal on the muscle. So this is what happens at the synapse, and this is how the electrical signal from the nerve gets transmitted to the muscle. So when you have prialt present, what happens in a fish, is that you plug up the calcium channels and so even though an electrical signal arrives at the nerve ending, no calcium enters through the calcium channels because they've been plugged up by prialt, and as a result none of the other events that normally occur, the release of neurotransmitter, the opening of the receptors on the muscle end, none of those occur. What happens is there is no electrical signal that is elicited in the muscle and that's why the snail makes this. Because it's part of its strategy for paralyzing fish. When you can't get the electrical signal from the nerve to the muscle, the fish is paralyzed. So if you inject prialt into a fish, it becomes paralyzed.