

Caption: Spectrograms and corresponding video snapshots (indicated by numbers) show the physical and acoustic behaviors of bats as they attempt to capture prey. Figure A shows a bat successfully capturing prey, while Figure D shows the bat's behavior when the prey is removed early in the hunt, indicated by the solid black vertical line. The echolocation signals emitted by the bat appear as near-vertical lines on the spectrogram. When these occur in quick succession as a bat approaches its prey, it is called a buzz. Three points during the buzz sequence are labeled: (a) start of buzz I, (b) end of buzz I/start of buzz II, and (c) end of buzz II. In Figure D, where the prey is removed, the bat does not emit a buzz II sequence.

Bat Echolocation

BACKGROUND INFORMATION	BIG IDEAS, NOTES & QUESTIONS
Many bats use an acoustic behavior called echolocation	
to perceive the world around them. During	
echolocation, bats emit ultrasonic sound waves and	
analyze the echoes returned when those sound waves	
bounce off of another object, such as a moth. The bat	
can then interpret this feedback to gauge distance and	
adjust its physical movements to capture the moth.	
During prey capture, bats emit echolocation signals at a	
variable rate. Before they detect prey, they are in	
"search" phase and emit signals infrequently. After they	
detect prey, they enter the "approach" phase and emit	
signals at an increased rate. The final phase is the	
"terminal buzz" in which signals are emitted in a rapid	
sequence to receive information frequently. In many	
species of bats, the terminal buzz consists of two distinct	
subphases: buzz I and buzz II. When signals are emitted	
slowly, bats have time to process each echo before	
sending the next signal, but the short interval between	
calls in the buzz likely does not leave enough time for	
the bat to process and react to information. Some	
scientists have argued that the buzz is not used to help	
during the current capture attempt but rather to help	
analyze what went wrong when prey escapes. In this	
study, researchers tested whether bats change their	
behavior during the buzz phase based on feedback. If so,	
the result would support the notion that the terminal	
buzz is used to respond to changes during prey capture	
rather than for evaluating failed captures afterward. In	
the control trials (Figure A), bats were recorded by audio	
and video as they were allowed to catch their prey. In	
the experimental trial shown in Figure D, researchers	
removed the prey early in the buzz I phase.	