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Population Dynamics 
 

OVERVIEW 

In the Population Dynamics Click & Learn, students explore two classic mathematical models that describe how 
populations change over time: the exponential and logistic growth models. Students learn about each model 
through an interactive simulator supported by introductory information and real biological examples. The 
accompanying “Student Worksheet” guides students’ exploration by having them analyze different components 
of the models, generate and interpret related plots, and investigate examples of population growth in bacteria 
and humans. The “African Wildlife Case Studies” handout allows students to apply the Population Dynamics Click 
& Learn to three case studies involving African antelope populations, including wildebeest. 

Additional information related to pedagogy and implementation can be found on this resource’s webpage, 
including suggested audience, estimated time, and curriculum connections. 

KEY CONCEPTS 

• Mathematical population models can be used to describe and simulate common patterns of population 
growth. 

• The exponential growth model describes how a population grows when it has unlimited resources. In this 
model, the population continues growing larger and faster over time. 

• The logistic growth model describes how a population grows when it is limited by resources or other density-
dependent factors. In this model, the population grows more slowly as it approaches a limit called the 
carrying capacity. 

• The results of these models can be plotted to simulate and analyze a population’s projected trajectory over 
time. 

STUDENT LEARNING TARGETS 

• Describe the assumptions of the exponential and logistic growth models, and how those assumptions do or 
do not apply to different populations. 

• Interpret and apply the exponential and logistic growth equations. 
• Explain how the key variables and parameters in these models — such as time, the maximum per capita 

growth rate, the initial population size, and the carrying capacity — affect population growth. 
• Use the exponential and logistic growth models to project and interpret real biological examples. 
• Interpret and analyze plots summarizing population growth over time. 

PRIOR KNOWLEDGE 

Students should be familiar with: 
• basic ecological concepts of populations and population growth 
• the general uses, strengths, and limitations of mathematical models 
• interpreting and applying mathematical equations 
• interpreting patterns on plots 

BACKGROUND 

The “Introduction” sections in the Population Dynamics Click & Learn provide general background on exponential 
and logistic growth. The Click & Learn also briefly covers the differences between continuous-time and discrete-
time population models and includes examples of how continuous-time models in particular can be applied to 
bacteria. 

http://www.hhmi.org/biointeractive/population-dynamics
https://www.biointeractive.org/classroom-resources/population-dynamics
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The section below and the appendices at the end of this document provide additional, more advanced 
information about the mathematics of these models. These parts of the document are optional and not required 
for doing the Click & Learn. 

Continuous-time vs. discrete-time models 

Although the Population Dynamics Click & Learn focuses on continuous-time models, the “Introduction” sections 
include some supplemental information on discrete-time models. As mentioned in these sections, continuous-
time models describe populations that are changing all the time. They are often used for organisms that 
reproduce year-round, such as bacteria or humans. Discrete-time models describe populations that change 
mainly over specific time periods. They are often used for organisms that reproduce or have high mortality rates 
seasonally, such as many insects and annual plants. If you make the time periods in a discrete-time model 
infinitely small (Δt  0), it essentially becomes a continuous-time model. 

As also noted in the Click & Learn, the maximum per capita growth rate in the continuous-time model (written 
there as r; also known as the instantaneous rate of increase, intrinsic growth rate, intrinsic capacity for increase, 
etc.) is slightly different from the maximum per capita growth rate in an equivalent discrete-time model (written 
there as rd; also known as the discrete growth factor). These rates are related as shown in the following equation: 

𝑟𝑟 = ln(𝑟𝑟𝑑𝑑 + 1) 

A derivation of this result is as follows. In a continuous-time exponential model, the population size N at time t is 
given by the following equation. (See Appendix 1 at the end of this document for more details.): 

𝑁𝑁(𝑡𝑡) = 𝑁𝑁0𝑒𝑒𝑟𝑟𝑟𝑟 
In a discrete-time exponential model, the population size Nt at time t is given by the following equation. (See the 
“The discrete-time exponential growth model” section in the Click & Learn for more details.): 

𝑁𝑁𝑡𝑡 = 𝑁𝑁0(𝑟𝑟𝑑𝑑 + 1)𝑡𝑡 
If the models are equivalent, N(t) in the continuous-time model will equal Nt in the discrete-time model. So: 

𝑁𝑁0𝑒𝑒𝑟𝑟𝑟𝑟 = 𝑁𝑁0(𝑟𝑟𝑑𝑑 + 1)𝑡𝑡 
Simplify the equation above to obtain the relationship between r and rd: 

𝑒𝑒𝑟𝑟 = 𝑟𝑟𝑑𝑑 + 1 
𝑟𝑟 = ln(𝑟𝑟𝑑𝑑 + 1) 

You will often see rd + 1 written as λ (lambda), which is known as the finite rate of increase. So: 

𝑒𝑒𝑟𝑟 = 𝜆𝜆 
𝑟𝑟 = ln(𝜆𝜆) 

TEACHING TIPS 

• It may be helpful to discuss the settings and plots for the simulators in the Population Dynamics Click & Learn 
as a class before students start using them. 

o Plot 1 shows the population size (N) as a function of time (t). It includes the ability to display the 
population growth rate (dN/dt) as the slope of this curve at a given point.  

 You may need to explain to students why dN/dt is the slope. In calculus, dN/dt is the derivative of N 
with respect to t. This means that dN/dt at time t is the slope of N(t) at that time. 

o Plot 2 shows the population growth rate (dN/dt) as a function of the population size (N).  

 Note that Plot 2 uses only the values of N that appear on Plot 1. You may need to adjust N0 or the 
“Min” and “Max” for N on Plot 1 in order to see more values on Plot 2. 

 You may need to remind students that N is a function of time t. So, although t does not appear on 
Plot 2 directly, it determines the values of N that are shown.  
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o The “Help” tab on the bottom of the Click & Learn provides important information about settings and 
limitations for the simulators.  

 In particular, the simulators may behave suboptimally at very large values of the variables and/or 
settings. This may result in lag or visual glitches, such as incorrect fluctuations in the curves. You may 
want to double-check such results with another graphing software. 

• There are two student documents that can be optionally used with the Population Dynamics Click & Learn. 
Please scaffold or modify these documents as needed (e.g., reduce the number of questions, simplify 
questions, etc.) in order to better fit your learning objectives and your students’ needs. 

o The “Student Worksheet” provides a general introduction to the characteristics of exponential and 
logistic growth models and the simulators in the Click & Learn. 

 Question 6 asks students to provide units for the parameters in the model. Students may be confused 
why the units of the maximum per capita growth rate (r) are “per time” (e.g., “per hour” or “per 
year”) rather than “individuals per time.” You may need to explain that the units of the overall 
population growth rate are “individuals per time,” but the units of a per capita growth rate are 
“individuals per time per individual,” which reduces to just “per time.” 

 Question 11 asks students to identify specific combinations of parameter values that produce certain 
patterns. This is a good opportunity for a class discussion where students can share their different 
answers and try to determine general ranges of parameters for each pattern. 

 Question 12 and the optional question after Question 19 ask students to perform calculations with 
exponents. You may have students skip these questions if they are unfamiliar with exponents; 
instruct them or edit the documents accordingly. Note that the optional question involves doing 
calculations with the logistic growth equation, which may be overly complex for some students.  

 Several questions (such as Questions 9, 10, 14, etc.) ask students to qualitatively describe or draw 
patterns they observe in the plots. You could also consider having students record specific values 
from the simulator and make claims based on the values they collected. 

 Several questions (such as Questions 14, 21, and 25) ask students to sketch graphs. If students are 
doing the worksheet online, they could upload digital drawings, take photos of sketches drawn on 
paper, or write descriptions of the graphs instead. 

o The “African Wildlife Case Studies” handout has students apply the models and simulators in the Click & 
Learn to three case studies involving African antelope populations.  

 If students are not familiar with the animals in these case studies (waterbuck, kudu, and wildebeest), 
consider showing them images or videos of the animals before doing the activity.  

 If the antelope examples are not as relevant or engaging to your students, consider adapting the 
handout to create your own case studies based on local examples, students’ interests, other topics 
they are learning about in class, etc.  

 Figure 1 is based on data from the following references: 

• Mduma, Simon A. R., A. R. E. Sinclair, and Ray Hilborn. “Food regulates the Serengeti wildebeest: 
A 40‐year record.” Journal of Animal Ecology 68, 6 (1999): 1101–1122. 
https://doi.org/10.1046/j.1365-2656.1999.00352.x.  

• Grange, Sophie, et al. “What limits the Serengeti zebra population?” Oecologia 140, 3 (2004): 
523–532. https://doi.org/10.1007/s00442-004-1567-6.  

• The examples in the “African Wildlife Case Studies” handout can be supplemented with related BioInteractive 
resources, such as the following: 

https://doi.org/10.1046/j.1365-2656.1999.00352.x
https://doi.org/10.1007/s00442-004-1567-6
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o The waterbuck case study is based on the 2015 Holiday Lecture “Modeling Populations and Species 
Interactions” by mathematical biologist Corina Tarnita. The lecture provides more context for the 
waterbuck example and explains how some of the parameters in the model were estimated. Other 
BioInteractive resources, such as the interactive Gorongosa Timeline, can be used to give more 
background on Gorongosa National Park, the site of the case study. 

o The wildebeest and rinderpest case study is explored in multiple BioInteractive resources, including the 
Scientists at Work video Mystery of the Buffalo Boom, the short film Serengeti: Nature’s Living Laboratory, 
and the Data Point activity “Serengeti Wildebeest Population Regulation.” 

• The Click & Learn mentions that calculus can be used on the equations for dN/dt, in both the continuous-time 
exponential and logistic models, to find equations for N as a function of t. Derivations of these equations are 
included in the two appendices at the end of this document and can be optionally provided to students with 
knowledge of algebra and calculus in order to practice their math skills. 

o Appendix 1 shows how to derive an equation for N(t) in the exponential growth model. You may wish to 
share it with students who are familiar with first-order differential equations. 

o Appendix 2 shows how to derive an equation for N(t) in the logistic growth model. This derivation is more 
challenging than the one for the exponential growth model but may be of interest to students with a 
strong background in calculus and algebra. 

• Discrete-time exponential and logistic models are briefly discussed in the “Introduction” sections of the Click 
& Learn but not in the “Student Worksheet.” You may wish to provide students with additional materials on 
discrete-time models if you are interested in covering them. 

• The simulators in the Click & Learn include an option to toggle between logarithmic and linear scales for the 
y-axes (population size and population growth rate).  

o Logarithmic scales are not explicitly covered in the student documents. If you are interested in covering 
logarithmic scales, consider asking students to toggle between the “Linear” and “Log” scales for some of 
the worksheet questions. They can record how switching scales affects the patterns of growth that they 
observe. For example, they could switch between scales as they observe the effects of r or N0 on Plot 1 or 
Plot 2. 

o If students are unfamiliar with logarithms or interpreting logarithmic scales, consider discussing them as a 
class and/or providing additional support. 

ANSWER KEY: STUDENT WORKSHEET 

PART 1: Introduction to Population Dynamics 

1. Describe a specific question or problem related to population dynamics that interests you. 
Student answers will vary. The Click & Learn gives several broad examples of how population dynamics can be 
related to conservation, pest and disease control, agriculture, and human populations.  

2. Do you think the question or problem you described could be investigated using a mathematical population 
model? Why or why not? 
Student answers will vary. You may want to emphasize that a tremendous variety of questions and problems 
can be investigated using mathematical models, and that the Click & Learn shows only a few examples of 
what models can do. 

PART 2: Exploring the Exponential Growth Model 

3. The end of the “Introduction” describes how you could use a continuous-time, exponential growth model to 
simulate an E. coli population growing in a lab. Describe another specific population and situation that you 

https://www.biointeractive.org/professional-learning/science-talks/modeling-populations-and-species-interactions
https://www.biointeractive.org/professional-learning/science-talks/modeling-populations-and-species-interactions
https://www.biointeractive.org/classroom-resources/gorongosa-timeline
https://www.biointeractive.org/classroom-resources/mystery-buffalo-boom
https://www.biointeractive.org/classroom-resources/serengeti-natures-living-laboratory
https://www.biointeractive.org/classroom-resources/serengeti-wildebeest-population-regulation
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could simulate with this type of model. 
Student answers will vary. For a continuous-time model, they should pick a population that is changing all the 
time due to year-round births or deaths. For exponential growth, their population should also not be limited by 
food, space, or other density-dependent factors.  

4. Complete the following table to explain the biological meanings of the symbols in the exponential growth 
model. For each explanation, give a specific example using the population you described above. 
Answers will vary depending on students’ interpretations and the populations that they chose. Example 
answers for a population of bacteria are shown below. 

Symbol Biological Meaning Specific Example 
N the number of individuals in the population how many bacteria are in the population at a 

given time 
t time whenever we are measuring the bacteria  
dN/dt the overall rate of change in the population 

size 
how quickly the population is gaining or losing 
bacteria 

r the largest possible growth rate of the 
population, per individual 

how quickly the population can gain bacteria 
when it’s growing as fast as possible, 
measured per bacteria 

N0 the initial population size how many bacteria were in the population 
when we first started measuring it 

5. Both dN/dt and r are types of growth rates. What are the differences between them? 
dN/dt is the overall population growth rate, which describes how fast the population is actually growing at a 
given time. r is the maximum per capita growth rate, which is a constant that describes how fast the 
population could grow if it’s growing as fast as possible. 

In these models, dN/dt changes over time (depends on t), but r stays the same (does not depend on t). Also, r 
is a per capita growth rate, meaning that it’s measured per individual, whereas dN/dt is measured for the 
overall population. 

6. No units are shown for the numbers in the “Settings” section. This is because each of these numbers can have 
many possible units. Give an example of possible units for each of the following: 
Student answers will vary. Several examples are shown below. 
a. N0 

individuals, animals, bacteria, etc. 
b. t 

seconds, hours, years, etc. 
c. r, using the units for t you gave above 

per second (equivalently, 1/seconds or seconds-1), where “second” is replaced with whatever time unit was 
chosen in Part B. These units could also be written in the form of “individuals per second, per individual,” 
which reduces to “per second” as well.  

Students may be confused why the units of the maximum per capita growth rate (r) are “per time” (e.g., 
“per second”) rather than “individuals per time.” You may need to explain that the units of the overall 
population growth rate are “individuals per time,” but the units of a per capita growth rate are 
“individuals per time per individual,” which reduces to just “per time.” 

7. Examine both Plot 1 and Plot 2. 
a. In Plot 1, what variables do the x- and y-axes represent?  

The x-axis represents time (t) and the y-axis represents population size (N).   
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b. In Plot 2, what variables do the x- and y-axes represent? 
The x-axis represents population size (N) and the y-axis represents population growth rate (dN/dt). 

8. Set N0 = 50, r = 0.5, and t = 5. 

a. What is the population size at this point?  
The population size (N) is 609.  

b. What is the population growth rate at this point? 
The population growth rate (dN/dt) is 304.56. 

9. Set r = 0.1, then gradually increase r by clicking the up-arrow to the right of the number. You may need to 
hover over the number to see the arrow. 
a. Examine Plot 1. As you increase r, what happens to the curve of population size over time?  

As r increases, this curve becomes steeper more quickly, showing that the population size increases more 
rapidly. 

b. Examine Plot 2. As you increase r, what happens to the curve of population growth rate vs. population 
size?  
This curve is always a straight line, which means that the population growth rate (dN/dt) increases linearly 
with population size (N). But as r increases, the line on Plot 2 becomes steeper, which indicates that the 
population growth rate is increasing more rapidly with N. 

10. Set r = 0.5 and N0 = 5, then gradually increase N0 by clicking the up-arrow to the right of the number.  

a. Examine Plot 1. How does the curve of population size over time change if you start with a smaller 
number of individuals (e.g., N0 = 5) compared to a larger number of individuals (e.g., N0 = 100)?  
When the population starts with a smaller number of individuals, the curve of population size over time is 
almost flat at the start, meaning that the population’s growth is initially slow. Over time, the curve 
increases more rapidly, meaning that the population is growing faster. When the population starts with a 
larger number of individuals, the curve rises very quickly from the start, meaning that the population is 
growing quickly from the start. 

b. Examine Plot 2. How does the curve of population growth rate vs. population size change if you start with 
a smaller number of individuals compared to a larger number? 
This curve does not change when you change the initial population size. (Note that Plot 2 uses only the 
values of N that appear in Plot 1, so students may see more or less of this curve depending on the values 
of N in their Plot 1. However, the curve itself will not change.) This means that the initial population size 
(N0) does not affect the relationship between the population growth rate (dN/dt) and population size (N).  

11. List one combination of values for r and N0 that produces each of the following patterns for population size 
over time. (There are many possible answers.) Use a time range with a “Min” of 0 and a “Max” of 10. 
Many answers are possible; some examples are shown below. Consider discussing students’ responses as a 
class to come up with general ranges of parameters for each pattern. 

Pattern Value of r Value of N0  
A long period of what appears to be almost no growth.  
(The curve in Plot 1 looks almost flat.) 

Small (e.g., 0.2) Small (e.g., 1) 

A long period of slow but clearly accelerating growth.  
(The curve in Plot 1 starts to become steeper at the end.) 

Intermediate (e.g., 
0.5) 

Small (e.g., 1) 

Extremely fast growth from the very beginning. Large (e.g., 1) Large (e.g., 100) 

PART 3: Exponential Growth in Bacteria 
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12. The example claims that the population growth rate at 24 hours will be 1.69 ⨉ 1026 bacteria per hour. 
Confirm this result by showing your calculations below. (Hint: The example contains the equations and values 
that you’ll need to use.) 
This calculation is very similar to the one shown in the example, just using 24 hours instead of 1 hour. First, 
calculate the population size at 24 hours: 

𝑁𝑁(𝑡𝑡) = 𝑁𝑁0𝑒𝑒𝑟𝑟𝑟𝑟 
= (2 bacteria)�𝑒𝑒2.45 per hour × 24 hours� 
= (2)(𝑒𝑒2.45 × 24) bacteria 
= 6.88 × 1025 bacteria 

 
Use this value of N to find the population growth rate at 24 hours: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑟𝑟 

= (2.45 per hour)(6.88 × 1025 bacteria) 
= 1.69 × 1026 bacteria per hour 

13. Using the simulator, fill in the following table with the population size (N) and population growth rate (dN/dt) 
at different time points (t, measured in hours).  

Time (t) 1 2 3 4 5 
Population size (N) 23 269 3112 36,067 417,963 

Population growth 
rate (dN/dt) 

56.78 
 

658.02 7625.36 88,365.35 
 

1,024,008.32 

14. Use your table above and/or the simulator to answer the following questions. (Hint: For the simulator, you 
may want to change the “Max” values for the axes on Plot 1 to get a better look at the curve. You can use the 
values of t and N from your table above to decide what the “Max” values should be.) 
a. Sketch how the population size (N) changes over time. 

A screenshot from the simulator is shown below. Student sketches may be less detailed but should follow 
the same overall pattern. 

 
b. Sketch how the population growth rate (dN/dt) changes based on population size (N). 

A screenshot from the simulator is shown below. Student sketches may be less detailed but should follow 
the same overall pattern. 
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c. The population growth rate (dN/dt) depends on the maximum per capita growth rate (r). Does r also 

change based on time or population size? Why or why not? 
No, r is a constant, so it will not change with time or population size. (In the simulator, for example, you 
use only one value for r when making a plot.) 

15. All models have strengths and limitations. A strength of a model could be something that the model simulates 
very well or something that makes it easy to use. A limitation could be something that the model does not 
simulate as well or an important process that it does not include. 
a. What is one strength of the exponential growth model you explored?  

Student answers will vary. They may say that the exponential growth model is good at simulating 
populations with unlimited resources, or that it is relatively simple to use or analyze compared to the 
logistic growth model. 

b. What is one limitation of the exponential growth model you explored? 
Student answers will vary. They may say that the exponential growth model cannot be applied to many 
situations, since populations rarely have unlimited resources and usually can’t grow forever. 

PART 4: Exploring the Logistic Growth Model 

16. Summarize the main differences between the exponential and logistic growth models. 
The exponential growth model describes a population with unlimited resources, which keeps growing bigger 
and faster over time. The logistic growth model describes a population that has limited resources or other 
limits to growth, which grows more slowly as it gets larger. 

17. Explain what the carrying capacity (K) is in your own words. 
Student answers may vary. They should generally indicate that the carrying capacity is the largest size of a 
population that the environment can support in the long run. 

18. Set N0 = 1, r = 0.6, and K = 1000. Also set the “Max” value for t on the x-axis of Plot 1 to 25. 

a. Examine Plot 1. What happens to the population size over time? 
The population increases in size until it reaches the carrying capacity. 

b. Examine Plot 2. For what values of N is the population growth rate almost zero (for example, 0.01 or 
lower)? 
The population growth rate is almost zero for values of N that are close to 0 or close to the carrying 
capacity (1000). 

c. Set N0 = 1500. What happens to the population size over time now? For what values of N is the 
population growth rate almost zero? 
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The population decreases in size until it reaches the carrying capacity. The population growth rate is 
almost zero for values of N that are close to the carrying capacity (1000). 

d. In general, for what values of N and K is the population growth rate almost zero? 
In general, the population growth rate is almost zero for values of N that are close to 0 or close to the 
carrying capacity. 

19. Set N0 = 1 again. Gradually increase r by clicking the up-arrow on its box. 

a. Examine Plot 1. As you increase r, what happens to the curve of population size over time?  
The population increases more quickly at the beginning and reaches the carrying capacity faster. 

b. Examine Plot 2. As you increase r, what happens to the curve of population growth rate vs. population 
size? (Hint: Pay attention to the numbers on the y-axis of Plot 2.) 
In general, the population growth rate is low when N is close to 0 or close to the carrying capacity (1000), 
but it has a peak between these two extremes. As r increases, the range on the y-axis of Plot 2 also 
increases, indicating that the peak is getting taller. (It can be shown that the maximum population growth 
rate occurs at N = K/2 and has a value of dN/dt = rK/4. This is why the peak of the curve on Plot 2 
increases with r.) 

PART 5: Logistic Growth in Bacteria 

Optional Question: The example claims that the population growth rate at 240 hours will be about 16,300 
bacteria per hour. Confirm this result by showing your calculations below. 
This calculation is very similar to the one shown in the example, just using 240 hours instead of 24 hours. First, 
calculate the population size at 240 hours: 

𝑁𝑁(𝑡𝑡) =
𝐾𝐾𝐾𝐾0

𝑁𝑁0 + (𝐾𝐾 − 𝑁𝑁0)𝑒𝑒−𝑟𝑟𝑟𝑟
 

=
(1013 bacteria)(2 bacteria)

(2 bacteria) + (1013 bacteria− 2 bacteria)𝑒𝑒−(0.05 per hour)(240 hours) 

=
(1013)(2 )

(2 ) + (1013  − 2 )𝑒𝑒−12
 bacteria 

= 325,510 bacteria 
 

Use this value of N to find the population growth rate at 24 hours: 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑟𝑟 �1−
𝑁𝑁
𝐾𝐾
� 

= (0.05 per hour)(325,510 bacteria) �1−
325,510 bacteria

1013 bacteria
� 

= 16,275 bacteria per hour 

20. Using the simulator, fill in the following table with the population size (N) and population growth rate (dN/dt) 
at different time points (t, measured in hours).  

Time (t) 100 200 300 400 500 
Population size (N) 288 8,150 9,985 10,000 

 
10,000 
 

Population growth 
rate (dN/dt) 

14.00 75.38 0.76 
 

0.01 
 

0.00 
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21. Use your table above and/or the simulator to answer the following questions. (Hint: For the simulator, you 
may want to change the “Max” values for the axes on Plot 1 to get a better look at the curve. You can use the 
values of t and N from your table above to decide what the “Max” values should be.) 

a. Sketch how the population size (N) changes over time. 
A screenshot from the simulator is shown below. Student sketches may be less detailed but should follow 
the same overall pattern. 

 

b. Sketch how the population growth rate (dN/dt) changes based on population size (N). 
A screenshot from the simulator is shown below. Student sketches may be less detailed but should follow 
the same overall pattern. 

 

c. How do your answers above compare to your answers for the exponential growth model (Question 14)? 
Student answers will vary depending on their observations. They will likely notice that the population size 
reaches a limit (the carrying capacity) over time in the logistic growth model, but it increases without limit 
in the exponential growth model. The population growth rate in the exponential growth model also 
increases without limit, but it decreases as N nears the carrying capacity in the logistic growth model. 

22. Complete the following table to explain why the population growth rate (dN/dt) is small in certain situations. 
The first row is filled out for you as an example. 
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The population 
growth rate (dN/dt) is 
small when… 

Mathematical explanation Biological explanation 

the population size 
(N) is close to 0 

The equation for the population 
growth rate is dN/dt = rN(1–N/K). 
When N is close to 0, both rN and 
N/K are small, which makes dN/dt 
small too. 

When the population size is small, the 
population has only a few individuals to 
produce offspring. This means the 
population can’t grow very quickly, so the 
population growth rate is small. 

the population size 
(N) is close to the 
carrying capacity (K) 

The equation for the population 
growth rate is dN/dt = rN(1–N/K). 
When N is close to K, the rightmost 
term, (1–N/K), is almost zero. This 
makes dN/dt almost zero (very small) 
too. 

Multiple explanations involving density-
dependent factors are possible. For 
example, when the population size is close 
to the carrying capacity, the population is 
probably using up most of the resources in 
its environment. Each individual won’t get 
as many resources, so they are more likely 
to die or won’t produce as many offspring. 
This makes the population grow more 
slowly. 

23. Like all models, the logistic growth model has both strengths and limitations. 
a. What is one strength of the logistic growth model you explored?  

Student answers will vary. They may say that the logistic growth model is more realistic or applies to more 
situations than the exponential growth model does, since many populations have limits to their growth. 

b. What is one limitation of the logistic growth model you explored? 
Student answers will vary. They may describe other factors they are interested in, such as age or sex 
structure, that were not captured by the simple model they explored. You may want to mention that there 
are other versions of exponential and logistic growth models that can capture these factors.   

c. How do your answers above compare to your answers for the exponential growth model (Question 15)? 
Student answers will vary depending on their previous responses. 

PART 6: Modeling Other Populations 

24. Do you think the global human population is experiencing exponential growth or logistic growth? Why?  
Student answers will vary. Many students may pick logistic growth because humans have limited resources 
(food, land, energy sources, etc.). 

25. Find a graph of the global human population over time and sketch it below.  
Student answers will vary. Example graphs, such as the one shown below, can be found on the Our World in 
Data website. 

https://ourworldindata.org/world-population-growth
https://ourworldindata.org/world-population-growth


Population Dynamics   
 

www.BioInteractive.org Updated August 2020 
 Page 12 of 19 

 

Click & Learn 
Educator Materials 

 

26. Based on the graph you found, would you change your answer to Question 24? Why or why not? 
Student answers will vary depending on their responses to Questions 24 and 25. Students may be surprised 
that the historical growth of the global human population appears to be exponential rather than logistic. 

27. What do you think will happen to the size of the global human population in the long run? Why? 
Student answers will vary depending on what factors they consider. They may say that it doesn’t seem possible 
for the human population to increase forever, since it would eventually exceed Earth’s available resources. 
Over time, growth rates may slow and better fit the pattern of logistic growth. (In fact, many countries have 
shifted to lower growth rates as they have become more industrialized.) 

28. Think of a population from a species not yet discussed that you are familiar with or have learned about. 

a. Propose a specific question about this population that you could investigate using a mathematical 
population model.  
Student answers will vary. Be open to a range of reasonable responses. 

b. What kind of model, exponential or logistic, would you use to simulate this population and why? 
Students should generally pick exponential growth models for populations with unlimited 
resources/growth and logistic growth models for populations with limited resources or other density-
dependent factors that limit growth (predation, disease, etc.). 

c. Is there anything you would need to add to the model you chose in Part B in order to answer your 
question in Part A? If so, what? 
Student answers will vary depending on the population and question they chose. Be open to a range of 
reasonable responses. 

ANSWER KEY: AFRICAN WILDLIFE CASE STUDIES 

PART 1: Waterbuck 

1. How could we use mathematical models to help waterbuck and other wildlife? 
There are many possible answers. For example, we could use models to project the size of wildlife populations 
in the future, to see which populations are in danger of dying out. We could also use models to simulate the 
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effects of different management actions to determine what action would be best for a population, or just to 
gain a better understanding of the factors affecting the population’s dynamics. 

2. What are the advantages of using a mathematical model to study a population rather than just observing the 
population? 
There are many possible answers. For example, models may be preferable if observing the population directly 
is difficult (e.g., the animals are hard to track) or costly (e.g., the animals require a lot of time and equipment 
to monitor). Models can also be used to project the effects of different scenarios and conditions, and to make 
predictions about things that haven’t happened yet or can’t be tested directly. 

3. At the start of the recovery period, the waterbuck population contained only 140 individuals. The population 
had 0.67 births per year per individual and 0.06 deaths per year per individual.  

a. What is the maximum per capita growth rate (r) for this population? Include units in your answer. 
0.61 individuals per year per individual (can also be written as just “0.61 per year”) 

b. What is the initial population size (N0) for this population? Include units in your answer. 
140 waterbuck 

4. Using the simulator, fill in the following table with the population size (N) and population growth rate (dN/dt) 
at different time points (t, measured in years).  

Time (t) 5 10 15 20 25 

Population size (N) 2,956 62,420 1,318,022 27,830,481 587,650,195 

Population growth 
rate (dN/dt) 

1,803.25 38,076.25 803,993.21 16,976,593.51 358,466,619.03 

5. Based on this model, how will the waterbuck population grow over time? Will the population ever stop 
growing or get smaller? 
In this model, the waterbuck population grows bigger and faster over time. It never stops growing or gets 
smaller. 

6. Do you think this model reflects how the waterbuck population will grow in real life? Why or why not? 
In real life, the population is unlikely to grow forever like in this model. It’s likely for something to eventually 
limit the population’s growth. For example, the population could run out of food or space, or experience more 
disease and predation, when it gets too large. 

7. Imagine that a decrease in the number of predators lowered the per capita death rate of the waterbuck to 
0.04 deaths per year per individual. 

a. What would be the new maximum per capita growth rate (r) for the waterbuck population?   
0.63 per year 

b. What would be the population size (N) after 20 years (t = 20)? Use the same N0 as in Question 3. 
41,518,199 waterbuck 

8. Imagine that new waterbuck immigrate into the park at a rate of 0.25 per year. Assume that there are no 
emigrations and that the rest of the population parameters are the same as in Question 3. 

a. What would be the population size after 20 years (t = 20)? 
4,130,409,628 waterbuck 

b. How does the size of the population with immigration (your answer to Part A) compare to the size of the 
population without immigration (your result for t = 20 in Table 1)? 
The population size with immigration (4,130,409,628 waterbuck) is much bigger than the population size 
without immigration (27,830,481 waterbuck). Even small changes in the growth rate can have a big 
impact in the exponential growth model, especially at later time points. 
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PART 2: Kudu 

9. Besides food and space, what are two other factors that could limit the size of a population? 
There are many possible answers. Examples include other density-dependent factors, such as increased rates 
of predation, disease, and parasitism when the population is large. The population could also be reduced by 
density-independent factors such as habitat loss, pollution, or natural disasters (fire, floods, droughts, etc.). 

10. What are the values of K, r, and N0 for this kudu population? 
K = 100 kudu, r = 0.26 per year, N0 = 10 kudu 

11. Based on this model, about how many years will it take the kudu population to reach the carrying capacity? 
(Hint: You may want to change the “Max” values for the axes on Plot 1 to get a better look at the curve.) 
about 29 years 

12. What will happen to the population growth rate (dN/dt) as the population size (N) gets closer and closer to 
the carrying capacity? 
The growth rate will initially increase until the population size reaches about half the carrying capacity (50). 
The growth rate will then decrease to 0 as the population gets closer and closer to the carrying capacity (100). 

13. Imagine that more land is added to the park, allowing it to support up to 250 kudu. How will the size of the 
kudu population change once this land is added? 
The population will probably grow until it reaches the new carrying capacity of 250 kudu. 

14. Reset the model to the values you determined in Question 10. Now imagine that trophy hunters start killing 
kudu in the park, which decreases their maximum per capita growth rate to 0.15 per year. How would this 
impact the kudu’s population size over time? (Hint: Look at how many years it will take the population to 
reach its carrying capacity now.) 
The population will grow more slowly after the hunters start killing kudu. Without the hunters, the population 
reached the carrying capacity in about 29 years. With the hunters, the population does not reach the carrying 
capacity until about 50 years. 

PART 3: Wildebeest  

15. Based on Figure 4, what kind of population growth model would you use to represent the Serengeti 
wildebeest population? Why? 
The wildebeest population curve in Figure 4 appears to follow the shape of a logistic growth model. The 
population size increases initially, then it grows more slowly and eventually stabilizes at a constant value (the 
carrying capacity). 

16. Was the wildebeest population at the carrying capacity in 1968? Why or why not? 
No, the population was not at the carrying capacity in 1968 because it continued to grow for several years, 
until around 1980.  

17. Calculate the size of the wildebeest population in the year 1968, using the logistic model simulator with the 
following settings: K = 1,245,000 wildebeest, r = 0.2717 per year, and N0 = 80,000 wildebeest in the year 
1958.   
634,497 wildebeest 

18. Imagine that the maximum per capita growth rate (r) for the wildebeest population increased to 0.4 per year 
in 1958. 
a. Suggest a specific reason that r could increase for a population. 

There are many possible reasons. Part 1 showed multiple factors that affect r, including the birth rate, 
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death rate, immigration rate, and emigration rate. An increase in the birth rate or immigration rate, or a 
decrease in the death rate or emigration rate, could all cause r to increase. 

b. Recalculate the population size in 1968 using the new r. You can use the same values for the other 
settings as in Question 17.   
982,852 wildebeest 

c. Sketch or describe how the wildebeest population curve in Figure 4 might change as a result of the new r. 
The population would grow more quickly and reach the carrying capacity sooner. 

19. Imagine that the carrying capacity (K) for the wildebeest population decreased to 1,000,000 wildebeest in 
1958.  
a. Suggest a specific reason that K could decrease for a population. 

There are many possible reasons. Any change that reduces how many wildebeest the environment 
supports could decrease K. For example, the wildebeest’s habitat could become smaller if part of the park 
is turned into cities or farmland, less rain could result in fewer plants for the wildebeest to eat, etc. 

b. Recalculate the population size in 1968 using the new K. You can use the same values for the other 
settings as in Question 17.   
568,235 wildebeest 

c. Sketch or describe how the wildebeest population curve in Figure 4 might change as a result of the new K. 
The population would grow less quickly and stop growing once it reached the new, smaller carrying 
capacity. 

20. Look at the size of the zebra population, which is shown as triangles in Figure 4, before and after the 
rinderpest vaccination campaign. 

a. What patterns or trends do you observe in the zebra population? 
The size of the zebra population stays fairly stable (does not change much) both during and after the 
rinderpest vaccination campaign. 

b. Based on your answer above, what effect does rinderpest have on zebras? 
It appears that zebras are not affected by rinderpest, since the decline in rinderpest had no effect on them. 

21. Based on Figure 4, did the zebra population growth rate (dN/dt) differ in the years 1985 and 2003? Why or 
why not? (Hint: dN/dt at a given time is the slope of the population growth curve at that time. 
The zebra population growth rate is given by the slope of the zebra population curve shown in Figure 4. This 
curve is fairly flat in both 1985 and 2003, suggesting that the zebra growth rate is nearly 0 in both years and 
does not differ much between years. 

22. Imagine that there is a large wildfire in the Serengeti in 2010.  

a. How might the zebra and wildebeest populations change right after the wildfire?  
Fire would kill both wildebeest and zebra, so both populations would probably decrease in size. 

b. How large do you think the zebra and wildebeest populations would be 50 years after the wildfire? 
Explain your answer, or what else you would want to know before making a prediction. 
Over time, if the habitat was not severely damaged, the populations could return to the same carrying 
capacity as before the fire. Students might want to know more about how the fire affected the habitat or 
other factors that could affect the population size over the next 50 years. 

23. We often design population models to answer certain questions. We may leave out other factors that are less 
relevant to our questions or that could overcomplicate our analysis. 
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a. Propose one new question about the waterbuck, kudu, or wildebeest populations that could be answered 
using the models you learned about in this activity. 
Student answers will vary. Be open to a range of reasonable responses. 

b. Propose one new question about the waterbuck, kudu, or wildebeest populations that could not be 
answered using these models. What could you add to the models in order to answer your question? 
Student answers will vary. Be open to a range of reasonable responses. 
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APPENDIX 1: Calculating N(t) in the exponential growth model 

The following equation describes the population growth rate (dN/dt) in the exponential growth model: 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑟𝑟 

Remember that N represents population size, t represents time, and r represents the maximum per capita growth 
rate. This equation is a first-order differential equation, which can be integrated to get an equation for N as a 
function of t.  

First, separate the variables, N and t, by dividing both sides by N and multiplying by dt: 

1
𝑁𝑁
𝑑𝑑𝑑𝑑 = 𝑟𝑟𝑟𝑟𝑟𝑟 

Next, integrate both sides and rearrange some terms: 

ln|𝑁𝑁(𝑡𝑡)| = 𝑟𝑟𝑟𝑟 + 𝑐𝑐 
𝑁𝑁(𝑡𝑡) = 𝑒𝑒𝑟𝑟𝑟𝑟+𝑐𝑐   

If we rewrite ec as C: 

𝑁𝑁(𝑡𝑡) = 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟 

From the equation above, we see that N = C when t = 0. When t = 0, N also equals the initial population size N0. 
So, C must equal N0. Thus: 

𝑁𝑁(𝑡𝑡) = 𝑁𝑁0𝑒𝑒𝑟𝑟𝑟𝑟 
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APPENDIX 2: Calculating N(t) in the logistic growth model 

The following equation describes the population growth rate (dN/dt) in the logistic growth model: 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑟𝑟 �1 −
𝑁𝑁
𝐾𝐾
� (1) 

Remember that N represents population size, t represents time, r represents the maximum per capita growth 
rate, and K represents the carrying capacity. 
Separate the variables, N and t, by dividing both sides by N(1–N/K) and multiplying by dt: 

1

𝑁𝑁 �1 −𝑁𝑁
𝐾𝐾�

𝑑𝑑𝑑𝑑 = 𝑟𝑟𝑟𝑟𝑟𝑟 (2) 

We need to integrate both sides of this equation to solve for N. However, the fraction on the left cannot be 
integrated directly, so we must first rewrite it using the method of partial fraction decomposition. Based on 
partial fraction decomposition: 

1

𝑁𝑁�1 −𝑁𝑁
𝐾𝐾�

=
𝐴𝐴
𝑁𝑁

+
𝐵𝐵

1 −𝑁𝑁
𝐾𝐾

(3) 

where A and B are unknown quantities that we must solve for. To do so, first multiply both sides by the 
denominator on the left: 

1 = 𝐴𝐴 �1−
𝑁𝑁
𝐾𝐾
� + 𝐵𝐵𝐵𝐵 

= 𝐴𝐴 −
𝐴𝐴𝐴𝐴
𝐾𝐾

+ 𝐵𝐵𝐵𝐵 (4) 

There are no terms containing N on the left, so the terms containing N on the right must cancel out. Thus: 
−𝐴𝐴𝐴𝐴
𝐾𝐾

+ 𝐵𝐵𝐵𝐵 = 0 

𝐵𝐵𝐵𝐵 =
𝐴𝐴𝐴𝐴
𝐾𝐾

 

𝐵𝐵 =
𝐴𝐴
𝐾𝐾

(5) 

Substituting the value of B from (5) into (4) yields: 

1 = 𝐴𝐴 −
𝐴𝐴𝐴𝐴
𝐾𝐾

+
𝐴𝐴𝐴𝐴
𝐾𝐾

 

= 𝐴𝐴 (6) 
Substituting the value of A from (6) into (5), we find: 

𝐵𝐵 =
1
𝐾𝐾

(7) 

Substitute the value of B from (7) and the value of A from (6) back into (3): 

1

𝑁𝑁�1 −𝑁𝑁
𝐾𝐾�

=
1
𝑁𝑁

+
1
𝐾𝐾

1 −𝑁𝑁
𝐾𝐾

(8) 

Substitute (8) into (2), integrate both sides, and rearrange the terms: 

��
1
𝑁𝑁

+
1
𝐾𝐾

1−𝑁𝑁
𝐾𝐾
�𝑑𝑑𝑑𝑑 = �𝑟𝑟𝑑𝑑𝑑𝑑 

ln|𝑁𝑁| − ln �1 −
𝑁𝑁
𝐾𝐾�

= 𝑟𝑟𝑟𝑟 + 𝑐𝑐 
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𝑙𝑙𝑙𝑙 �
𝑁𝑁

1 −𝑁𝑁
𝐾𝐾
� = 𝑟𝑟𝑟𝑟 + 𝑐𝑐 

𝑁𝑁

1 −𝑁𝑁
𝐾𝐾

= 𝑒𝑒𝑟𝑟𝑟𝑟+𝑐𝑐 (9) 

If we rewrite ec as C, (9) becomes: 
𝑁𝑁

1 −𝑁𝑁
𝐾𝐾

= 𝐶𝐶𝑒𝑒𝑟𝑟𝑟𝑟 (10) 

When t = 0, N equals the initial population size N0. So, based on (10): 
𝑁𝑁0

1 −𝑁𝑁0
𝐾𝐾

= 𝐶𝐶𝑒𝑒0 

𝐾𝐾𝑁𝑁𝑜𝑜
𝐾𝐾 − 𝑁𝑁0

= 𝐶𝐶 (11) 

Before substituting (11) into (10), let’s rearrange (10) to get N by itself. First, multiply both sides of (10) by the 
denominator on the left: 

𝑁𝑁 = �1 −
𝑁𝑁
𝐾𝐾
�𝐶𝐶𝑒𝑒𝑟𝑟𝑟𝑟 (12) 

Move all the terms containing N to the left side of the equation, then factor out N: 

𝑁𝑁 +
𝑁𝑁
𝐾𝐾
𝐶𝐶𝑒𝑒𝑟𝑟𝑟𝑟 = 𝐶𝐶𝑒𝑒𝑟𝑟𝑟𝑟 

𝑁𝑁�1 +
𝐶𝐶𝑒𝑒𝑟𝑟𝑟𝑟

𝐾𝐾 � = 𝐶𝐶𝑒𝑒𝑟𝑟𝑟𝑟 (13) 

Rearrange (13) to get N on one side: 

𝑁𝑁 =
𝐶𝐶𝑒𝑒𝑟𝑟𝑟𝑟

1 + 𝐶𝐶𝑒𝑒𝑟𝑟𝑟𝑟
𝐾𝐾

(14) 

Substitute in (11) for C: 

𝑁𝑁 =

𝐾𝐾𝑁𝑁𝑜𝑜
𝐾𝐾 − 𝑁𝑁0

𝑒𝑒𝑟𝑟𝑟𝑟

1 +

𝐾𝐾𝑁𝑁𝑜𝑜
𝐾𝐾 − 𝑁𝑁0

𝑒𝑒𝑟𝑟𝑟𝑟

𝐾𝐾

(15) 

Multiply the numerator and denominator on the right side of (15) by K – N0, then rearrange as follows: 

𝑁𝑁 =
𝐾𝐾𝑁𝑁𝑜𝑜𝑒𝑒𝑟𝑟𝑟𝑟

(𝐾𝐾 − 𝑁𝑁𝑜𝑜) + 𝐾𝐾𝑁𝑁𝑜𝑜𝑒𝑒𝑟𝑟𝑟𝑟
𝐾𝐾

 

=
𝐾𝐾𝑁𝑁𝑜𝑜𝑒𝑒𝑟𝑟𝑟𝑟

(𝐾𝐾 − 𝑁𝑁𝑜𝑜) + 𝑁𝑁𝑜𝑜𝑒𝑒𝑟𝑟𝑟𝑟
 

=
𝐾𝐾𝑁𝑁𝑜𝑜

(𝐾𝐾 − 𝑁𝑁𝑜𝑜)𝑒𝑒−𝑟𝑟𝑟𝑟 + 𝑁𝑁𝑜𝑜
(16) 

Rearrange the terms in the denominator to get the final equation for N as a function of t: 

𝑁𝑁(𝑡𝑡) =
𝐾𝐾𝑁𝑁𝑜𝑜

𝑁𝑁𝑜𝑜 + (𝐾𝐾 − 𝑁𝑁𝑜𝑜)𝑒𝑒−𝑟𝑟𝑟𝑟
(17) 
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	12. The example claims that the population growth rate at 24 hours will be 1.69 ⨉ 1026 bacteria per hour. Confirm this result by showing your calculations below. (Hint: The example contains the equations and values that you’ll need to use.) This calcu...
	𝑁,𝑡.=,𝑁-0.,𝑒-𝑟𝑡. =,2 bacteria.,,𝑒-2.45 per hour × 24 hours.. =,2.,,𝑒-2.45 × 24.. bacteria =6.88×,10-25. bacteria  Use this value of N to find the population growth rate at 24 hours:
	𝑁,𝑡.=,𝑁-0.,𝑒-𝑟𝑡. =,2 bacteria.,,𝑒-2.45 per hour × 24 hours.. =,2.,,𝑒-2.45 × 24.. bacteria =6.88×,10-25. bacteria  Use this value of N to find the population growth rate at 24 hours:
	,𝑑𝑁-𝑑𝑡.=𝑟𝑁 =,2.45 per hour.,6.88×,10-25. bacteria. =1.69×,10-26. bacteria per hour
	,𝑑𝑁-𝑑𝑡.=𝑟𝑁 =,2.45 per hour.,6.88×,10-25. bacteria. =1.69×,10-26. bacteria per hour
	13. Using the simulator, fill in the following table with the population size (N) and population growth rate (dN/dt) at different time points (t, measured in hours).
	14. Use your table above and/or the simulator to answer the following questions. (Hint: For the simulator, you may want to change the “Max” values for the axes on Plot 1 to get a better look at the curve. You can use the values of t and N from your ta...
	a. Sketch how the population size (N) changes over time. A screenshot from the simulator is shown below. Student sketches may be less detailed but should follow the same overall pattern.
	b. Sketch how the population growth rate (dN/dt) changes based on population size (N). A screenshot from the simulator is shown below. Student sketches may be less detailed but should follow the same overall pattern.
	c. The population growth rate (dN/dt) depends on the maximum per capita growth rate (r). Does r also change based on time or population size? Why or why not? No, r is a constant, so it will not change with time or population size. (In the simulator, f...
	15. All models have strengths and limitations. A strength of a model could be something that the model simulates very well or something that makes it easy to use. A limitation could be something that the model does not simulate as well or an important...
	a. What is one strength of the exponential growth model you explored?  Student answers will vary. They may say that the exponential growth model is good at simulating populations with unlimited resources, or that it is relatively simple to use or anal...
	b. What is one limitation of the exponential growth model you explored? Student answers will vary. They may say that the exponential growth model cannot be applied to many situations, since populations rarely have unlimited resources and usually can’t...
	PART 4: Exploring the Logistic Growth Model

	16. Summarize the main differences between the exponential and logistic growth models. The exponential growth model describes a population with unlimited resources, which keeps growing bigger and faster over time. The logistic growth model describes a...
	17. Explain what the carrying capacity (K) is in your own words. Student answers may vary. They should generally indicate that the carrying capacity is the largest size of a population that the environment can support in the long run.
	18. Set N0 = 1, r = 0.6, and K = 1000. Also set the “Max” value for t on the x-axis of Plot 1 to 25.
	a. Examine Plot 1. What happens to the population size over time? The population increases in size until it reaches the carrying capacity.
	b. Examine Plot 2. For what values of N is the population growth rate almost zero (for example, 0.01 or lower)? The population growth rate is almost zero for values of N that are close to 0 or close to the carrying capacity (1000).
	c. Set N0 = 1500. What happens to the population size over time now? For what values of N is the population growth rate almost zero? The population decreases in size until it reaches the carrying capacity. The population growth rate is almost zero for...
	d. In general, for what values of N and K is the population growth rate almost zero? In general, the population growth rate is almost zero for values of N that are close to 0 or close to the carrying capacity.
	19. Set N0 = 1 again. Gradually increase r by clicking the up-arrow on its box.
	a. Examine Plot 1. As you increase r, what happens to the curve of population size over time?  The population increases more quickly at the beginning and reaches the carrying capacity faster.
	b. Examine Plot 2. As you increase r, what happens to the curve of population growth rate vs. population size? (Hint: Pay attention to the numbers on the y-axis of Plot 2.) In general, the population growth rate is low when N is close to 0 or close t...
	PART 5: Logistic Growth in Bacteria

	𝑁,𝑡.=,,𝐾𝑁-0.-,𝑁-0.+,𝐾−,𝑁-0..,𝑒-−𝑟𝑡.. =,,,10-13. bacteria.,2 bacteria.-,2 bacteria.+(,10-13. bacteria−2 bacteria),𝑒-−(0.05 per hour)(240 hours).. =,,,10-13..,2 .-,2 .+(,10-13. −2 ),𝑒-−12.. bacteria =325,510 bacteria  Use this value of N to ...
	𝑁,𝑡.=,,𝐾𝑁-0.-,𝑁-0.+,𝐾−,𝑁-0..,𝑒-−𝑟𝑡.. =,,,10-13. bacteria.,2 bacteria.-,2 bacteria.+(,10-13. bacteria−2 bacteria),𝑒-−(0.05 per hour)(240 hours).. =,,,10-13..,2 .-,2 .+(,10-13. −2 ),𝑒-−12.. bacteria =325,510 bacteria  Use this value of N to ...
	,𝑑𝑁-𝑑𝑡.=𝑟𝑁,1−,𝑁-𝐾.. =,0.05 per hour.,325,510 bacteria.,1−,325,510 bacteria-,10-13. bacteria.. =16,275 bacteria per hour
	,𝑑𝑁-𝑑𝑡.=𝑟𝑁,1−,𝑁-𝐾.. =,0.05 per hour.,325,510 bacteria.,1−,325,510 bacteria-,10-13. bacteria.. =16,275 bacteria per hour
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	CREDITS
	APPENDIX 1: Calculating N(t) in the exponential growth model

	The following equation describes the population growth rate (dN/dt) in the exponential growth model:
	,𝑑𝑁-𝑑𝑡.=𝑟𝑁
	Remember that N represents population size, t represents time, and r represents the maximum per capita growth rate. This equation is a first-order differential equation, which can be integrated to get an equation for N as a function of t.
	First, separate the variables, N and t, by dividing both sides by N and multiplying by dt:
	,1-𝑁.𝑑𝑁=𝑟𝑑𝑡
	Next, integrate both sides and rearrange some terms:
	ln,𝑁,𝑡..=𝑟𝑡+𝑐 𝑁,𝑡.=,𝑒-𝑟𝑡+𝑐.
	If we rewrite ec as C:
	𝑁,𝑡.=,𝐶𝑒-𝑟𝑡.
	From the equation above, we see that N = C when t = 0. When t = 0, N also equals the initial population size N0. So, C must equal N0. Thus:
	𝑁(𝑡)=,𝑁-0.,𝑒-𝑟𝑡.
	APPENDIX 2: Calculating N(t) in the logistic growth model

	The following equation describes the population growth rate (dN/dt) in the logistic growth model:
	,,𝑑𝑁-𝑑𝑡.=𝑟𝑁,1−,𝑁-𝐾..#,1..
	Remember that N represents population size, t represents time, r represents the maximum per capita growth rate, and K represents the carrying capacity.
	Separate the variables, N and t, by dividing both sides by N(1–N/K) and multiplying by dt:
	,,1-𝑁,1−,𝑁-𝐾...𝑑𝑁=𝑟𝑑𝑡#,2..
	We need to integrate both sides of this equation to solve for N. However, the fraction on the left cannot be integrated directly, so we must first rewrite it using the method of partial fraction decomposition. Based on partial fraction decomposition:
	,,1-𝑁,1−,𝑁-𝐾...=,𝐴-𝑁.+,𝐵-1−,𝑁-𝐾..#,3..
	where A and B are unknown quantities that we must solve for. To do so, first multiply both sides by the denominator on the left:
	1=𝐴,1−,𝑁-𝐾..+𝐵𝑁 ,=𝐴−,𝐴𝑁-𝐾.+𝐵𝑁#,4..
	1=𝐴,1−,𝑁-𝐾..+𝐵𝑁 ,=𝐴−,𝐴𝑁-𝐾.+𝐵𝑁#,4..
	There are no terms containing N on the left, so the terms containing N on the right must cancel out. Thus:
	,−𝐴𝑁-𝐾.+𝐵𝑁=0 𝐵𝑁=,𝐴𝑁-𝐾. ,𝐵=,𝐴-𝐾.#,5..
	,−𝐴𝑁-𝐾.+𝐵𝑁=0 𝐵𝑁=,𝐴𝑁-𝐾. ,𝐵=,𝐴-𝐾.#,5..
	Substituting the value of B from (5) into (4) yields: 1=𝐴−,𝐴𝑁-𝐾.+,𝐴𝑁-𝐾. ,=𝐴#,6.. Substituting the value of A from (6) into (5), we find:
	Substituting the value of B from (5) into (4) yields: 1=𝐴−,𝐴𝑁-𝐾.+,𝐴𝑁-𝐾. ,=𝐴#,6.. Substituting the value of A from (6) into (5), we find:
	,𝐵=,1-𝐾.#,7..
	Substitute the value of B from (7) and the value of A from (6) back into (3):
	,,1-𝑁,1−,𝑁-𝐾...=,1-𝑁.+,,1-𝐾.-1−,𝑁-𝐾..#,8..
	Substitute (8) into (2), integrate both sides, and rearrange the terms:
	,,,1-𝑁.+,,1-𝐾.-1−,𝑁-𝐾...𝑑𝑁=,𝑟𝑑𝑡.. ln,𝑁.−ln,1−,𝑁-𝐾..=𝑟𝑡+𝑐 𝑙𝑛,,𝑁-1−,𝑁-𝐾...=𝑟𝑡+𝑐 ,,𝑁-1−,𝑁-𝐾..=,𝑒-𝑟𝑡+𝑐.#,9..
	,,,1-𝑁.+,,1-𝐾.-1−,𝑁-𝐾...𝑑𝑁=,𝑟𝑑𝑡.. ln,𝑁.−ln,1−,𝑁-𝐾..=𝑟𝑡+𝑐 𝑙𝑛,,𝑁-1−,𝑁-𝐾...=𝑟𝑡+𝑐 ,,𝑁-1−,𝑁-𝐾..=,𝑒-𝑟𝑡+𝑐.#,9..
	If we rewrite ec as C, (9) becomes:
	,,𝑁-1−,𝑁-𝐾..=𝐶,𝑒-𝑟𝑡.#,10..
	When t = 0, N equals the initial population size N0. So, based on (10):
	,,𝑁-0.-1−,,𝑁-0.-𝐾..=𝐶,𝑒-0. ,,𝐾,𝑁-𝑜.-𝐾−,𝑁-0..=𝐶#,11..
	,,𝑁-0.-1−,,𝑁-0.-𝐾..=𝐶,𝑒-0. ,,𝐾,𝑁-𝑜.-𝐾−,𝑁-0..=𝐶#,11..
	Before substituting (11) into (10), let’s rearrange (10) to get N by itself. First, multiply both sides of (10) by the denominator on the left:
	,𝑁=,1−,𝑁-𝐾..𝐶,𝑒-𝑟𝑡.#,12..
	Move all the terms containing N to the left side of the equation, then factor out N:
	𝑁+,𝑁-𝐾.𝐶,𝑒-𝑟𝑡.=𝐶,𝑒-𝑟𝑡. ,𝑁,1+,𝐶,𝑒-𝑟𝑡.-𝐾..=𝐶,𝑒-𝑟𝑡.#,13..
	𝑁+,𝑁-𝐾.𝐶,𝑒-𝑟𝑡.=𝐶,𝑒-𝑟𝑡. ,𝑁,1+,𝐶,𝑒-𝑟𝑡.-𝐾..=𝐶,𝑒-𝑟𝑡.#,13..
	Rearrange (13) to get N on one side:
	,𝑁=,𝐶,𝑒-𝑟𝑡.-1+,𝐶,𝑒-𝑟𝑡.-𝐾..#,14..
	Substitute in (11) for C: ,𝑁=,,𝐾,𝑁-𝑜.-𝐾−,𝑁-0..,𝑒-𝑟𝑡.-1+,,𝐾,𝑁-𝑜.-𝐾−,𝑁-0..,𝑒-𝑟𝑡.-𝐾..#,15..
	Substitute in (11) for C: ,𝑁=,,𝐾,𝑁-𝑜.-𝐾−,𝑁-0..,𝑒-𝑟𝑡.-1+,,𝐾,𝑁-𝑜.-𝐾−,𝑁-0..,𝑒-𝑟𝑡.-𝐾..#,15..
	Multiply the numerator and denominator on the right side of (15) by K – N0, then rearrange as follows:
	𝑁=,𝐾,𝑁-𝑜.,𝑒-𝑟𝑡.-(𝐾−,𝑁-𝑜.)+,𝐾,𝑁-𝑜.,𝑒-𝑟𝑡.-𝐾..
	=,𝐾,𝑁-𝑜.,𝑒-𝑟𝑡.-(𝐾−,𝑁-𝑜.)+,𝑁-𝑜.,𝑒-𝑟𝑡..
	,=,𝐾,𝑁-𝑜.-,𝐾−,𝑁-𝑜..,𝑒-−𝑟𝑡.+,𝑁-𝑜..#,16..
	Rearrange the terms in the denominator to get the final equation for N as a function of t:
	,𝑁,𝑡.=,𝐾,𝑁-𝑜.-,𝑁-𝑜.+,𝐾−,𝑁-𝑜..,𝑒-−𝑟𝑡..#,17..

