ABSTRACT
The universal appeal and pedagogical power of stories are well established, yet they are underutilized in biology classrooms. I suggest that stories have an important role in helping students understand how science is made, and in offering glimpses into the hearts and lives of scientists.

Key Words: science teaching; story telling; creativity.

Tell me a fact and I’ll learn. Tell me the truth and I’ll believe. But tell me a story and it will live in my heart forever.

— Native American Proverb

“All children, except one, grow up.”
“In a hole in the ground there lived a hobbit.”
“A long time ago, in a galaxy far, far away . . .”

Do I even need to say where these opening lines are from? These phrases have been etched into our memories from the moment we first heard or read them. And how we love the stories they begin. The third quote is, of course, the first line of the first Star Wars movie in 1977, the start of what has turned out to be the largest grossing movie franchise of all time: thirteen films have earned more than 9 billion dollars and been seen by about 40 percent of American adults.

From Dr. Seuss to Disney, Harry Potter to Game of Thrones, we grow up and live in a world teeming with stories. In all forms of media—books, films, television, radio, and the internet—stories are the currency of everyday life.

Yet they are strangely absent from most science classrooms. Despite a universal appreciation and thirst for stories, and considerable evidence for their pedagogical power, stories are underutilized in formal education, and in learning science in particular. One of my main goals as a scientist, educator, and storyteller is to encourage the use of stories in science education. Here, I will focus on two main questions: Why do stories have an important place in the science classroom? And, what makes for a good science story?

Homo Narrans

Rudyard Kipling once said, “If history were taught in the form of stories, it would never be forgotten” (1970). The author of The Jungle Book and the youngest writer ever to win the Nobel Prize for Literature (in 1907) certainly knew how to tell memorable stories. But he could not have known that in the ensuing century, a new branch of psychology would emerge that has amply confirmed his instinct about the power of stories.

One of the central tenets of “narrative theory” is that human thought is fundamentally structured around stories. People record and recall life experiences—their own as well as others’ experiences—in the form of stories. This has been true since or before the dawn of civilization. Before the advent of writing, some reliable means was needed to transmit lore and information faithfully from generation to generation (Egan, 1989).

All oral cultures, including those that survive to the present day, use storytelling. Stories typically embed content into vivid imagery and characters that inspire our imagination and arouse our emotions. No doubt our ancestors discovered that knowledge embedded in story form was more memorable. It has been claimed, and reasonably so, that story is one of the most important human inventions (Egan, 1989). Indeed, we are such storytelling and story-seeking creatures that numerous experts have dubbed our species Homo narrans (the storytelling person).

One important thrust of current research in this area is to understand why and how narrative plays such a crucial role in human
The fragmented skull was indisputable evidence that Africa was the cradle of humanity, and the reward for the indefatigable efforts of these two brave pioneers who were willing to live most of their lives in the bush in the hope of finding something that would upend not only the scientific world, but society at large. But is any of that story—the long quest, the many setbacks, or the moment of triumph—the elements that make any kind of tale more exciting, engaging, and memorable, conveyed in a textbook?

Take a glance at leading high school and college biology texts, and the story of human origins is all about species names and dates (shrug). Bruner advocated more than twenty years ago that “our instruction in science from the start to the finish should be mindful of the lively processes of science making, rather than an account only of ‘finished’ science as represented in the textbook” (1996, p. 127). Thomas Newkirk, author of Minds Made for Stories, has noted how the structure of narrative can mirror the act of a scientist coming to an understanding so that as readers, “we are able to follow a mind at work” (2014, p. 49).

However, although the pedagogical importance of narrative is undisputed (Hadzigeorgiou, 2016, p. 91), its value is not widely recognized and it remains underutilized. “Stories are an underused medium for learning. Pushed to the margins of the curriculum to stimulate art and drama activities, but forgotten or neglected when the study of more ‘serious’ subjects begins” (Egan in Hadzigeorgiou, 2016, p. 83). This state of affairs is more than a missed opportunity—it is a shame.

Without narrative to illuminate the making of science, students are left to study the finished science, with little context as to what questions inspired an investigation or how a mystery was solved. And they get the wrong impression, or perhaps no impression at all, about who scientists are, what they do, and why they do it.

○ Science Is Their Superpower

Good stories make for good pedagogy. But what makes a good story? Or more to the point, what makes a good science story—one that is worth precious time in the classroom, or at home?

There are two key ingredients to any story: plot and characters. One might think that factual science stories would be at some disadvantage to fictional stories about boys who can fly or a ring with magic powers. Not true!

Adam Gopnik, a brilliant writer for The New Yorker (and interestingly not a scientist himself), has made a very persuasive case that science stories offer something special. He argues that both good science stories and good scientific theories are startling; they astonish us with their claims. For example, he cites this premise for a story from
The Gift of Inspiration

People are drawn to stories for more than entertainment. Robert McKee, a master storyteller and guru to legions of Hollywood screenwriters, points out that stories fulfill “the profound human need to grasp the patterns of living—not merely as an intellectual exercise, but within a very personal, emotional experience” (1997, p. 12). That emotional experience is very much a part of scientists’ lives. Take Mary and Louis Leakey’s discovery of human origins: an epic quest, for sure, but also a love story that encompasses ambition, desire, conflict, frustration, betrayal, and ultimately, the thrill of discovery. These feelings and human qualities such as courage, persistence, sacrifice, and resilience, surface often in stories of scientific exploration and discovery.

By offering students glimpses into the hearts and lives of scientists—their passions, aspirations, struggles, setbacks, and the price many willingly pay to do what they love—stories offer one of the most precious gifts any student may receive—inspiration. Students get Jefferson and Lincoln in history class, Shakespeare and Twain in English class, Beethoven and The Beatles in music class. Shouldn’t they also get to know the stories of some of the people who have shaped our understanding of the natural world?

Surely, we don’t want generations of biology students to grow up like Peter Pan and the Lost Boys.

WENDY: Peter, why did you come to our window?
PETER: To hear a story. None of us know any stories.

WENDY: How perfectly awful!
Perfectly awful indeed!

Acknowledgments

I thank Laura Bonetta, Rich Stone, and Bill McComas for their helpful comments.

References

SEAN B. CARROLL (carrolls@hhmi.org) is Vice president for Science Education at the Howard Hughes Medical Institute and the Andrew and Mary Balo and Nicholas and Susan Simon Professor of Biology at the University of Maryland–College Park. His newest book, The Story of Life: Great Discoveries in Biology, will be published by W.W. Norton this fall.
P51.
Molecular Glow Lab

Study DNA Structure
Hands On

Investigate how factors like temperature, pH, and genetic sequence affect the DNA double helix. And it glows!

Learn more at P51lab.info

Visit us at NABT San Diego! Booth 400 Workshops all day

——

Teach and Earn your MS in Science Education

- Online courses during the school year
- Summer field/lab course opportunities
- Customized study plans - course options in all science disciplines
- Supports traditional & non-traditional science educators
- Emphasizes NGSS
- Customized capstone experience
- Affordable, competitive tuition

Visit us at the NABT Conference in San Diego, Nov 8-9, booth 513!

Learning online during the busy school year, while spending summers investigating the beautiful rugged landscape of Southwest Montana and the Greater Yellowstone Ecosystem—now who wouldn’t want to do that?

www.montana.edu/msse