1 - 12 of 27 results
Modeling the Structure of DNA

In this activity, students build a paper model of DNA and use their model to explore key structural features of the DNA double helix. This activity can be used to complement the short film The Double Helix.

Inheritance and Mutations in a Single-Gene Disorder

This activity builds on information presented in the short film Genes as Medicine. Students interpret actual pedigrees to determine the inheritance pattern of Leber congenital amaurosis (LCA), an inherited form of blindness.

Red Tattoo

This activity explores an image of tattoo ink particles inside cells, which serves as a phenomenon for learning about the structure and color of human skin.

Coloration in Vertebrates

This activity explores images of animals with a mutation that affects coloration, which serve as phenomena for learning about skin color genetics and evolution.

Pelvic Evolution in Sticklebacks

This activity guides the analysis of a published scientific figure from a study that used SNP genotyping to identify the mutations that result in morphological differences in stickleback fish.

“Fixing” Gene Expression

In this hands-on activity, students review the steps of eukaryotic gene expression and learn how this knowledge can be used to treat different genetic conditions. The activity reinforces concepts covered in the Click & Learn “Central Dogma and Genetic Medicine.”

Activity for Genes as Medicine

This activity explores the content and research presented in the short film Genes as Medicine, which tells the story of how scientists succeeded in developing a gene therapy for a type of congenital blindness.

Tracking Genetically Modified Mosquitoes

This activity challenges students to provide their questions and ideas for experiments they could conduct to investigate the impact of releasing genetically modified mosquitoes into the wild. It accompanies the video Genetically Modified Mosquitoes.

Root Movement

This activity explores images of plant cells and structures, which serve as phenomena for learning about how plants respond to stimuli.

HIV Reverse Transcription and AZT

This activity allows students to model how the anti-HIV drug AZT (azidothymidine) interferes with the process of viral replication.

Viral DNA Integration

In this hands-on activity, students model how a double-stranded DNA copy of the HIV genome is integrated into the host cell DNA.

DNA Profiling Activity

This multipart activity is designed to give students a firm understanding of genetic profiling using short tandem repeats (STRs), which is a process used by forensics labs around the world.